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Targeting Incoming Ship Risk Assessment with Machine Learning 

As this inspection process is labor-intensive 
and monetarily expensive, custom AI and 
machine learning (ML) algorithms can be 
leveraged to improve operational efficiency 
and reduce cost by improving inspection 
targeting. Deloitte has developed a novel AI-
enabled decision support tool designed for 
two main purposes:

 • Determine the likelihood of deficiencies 
in incoming vessels for effective pre-
screening and prioritization.

 • Highlight the data that has the most 
impact on the predicted risk allowing 
for human interpretation of model 
predictions. 

Simulated evaluation of the solution 
demonstrated a nearly two-fold (89%) 
increase in efficiency over current rule–
based methods: 34% of inspected ships 
were found deficient, up from 18% (Figure 
1). As the prevalence of deficiencies among 
uninspected vessels cannot be known with 
certainty, the model’s focus is to increase 
the prevalence of deficiencies among 
inspected vessels. It accomplishes this 
by ordering potential targets in order of 
their ML-calculated likelihood of containing 
one or more deficiencies aboard; as the 

same number of vessels are inspected, the 
model catches more deficiencies using the 
same amount of resources. The AI solution 
is deployable to any handheld device or 
computer at the point of inspection to 
provide real-time support and transparent 
analysis of vessel characteristics. 
Additionally, to accelerate deployment time, 
a simplified AI-informed linear regression 
model will allow the USCG to adopt an 
offline, hard-copy version, translating digital 
models to a form available on a clipboard.

As the ability to predict deficient vessels 
from historical data is a valuable tool with 
high operational relevance, understanding 
the implementation and methods is 
imperative towards real-world testing 
and adoption. In this report, we discuss 
challenges posed by maritime vessel 
inspection, how data and machine learning 
can be leveraged to improve vessel 
targeting, and provide recommendations 
on real-world evaluation and deployment to 
integration with USCG systems.

AI Port Control: Augmented Intelligence 
for Vessel Inspections

Challenge:
Develop and integrate an AI/ML 
powered vessel deficiency 
assessment system 

Solution highlights:

 • Analyze tens of thousands of prior 
docking and inspection records 
to determine what outward 
characteristics signal internal 
deficiency

 • Design a robust pipeline to augment 
on–site personnel judgement

 • Deploy test, validation and periodic 
model update systems to handle 
real–world drift

Maritime security and safety pose unique challenges for the United States Coast Guard (USCG) when enforcing international 
regulations for Port State Control (PSC). In 2021, over 70,000 ships docked at US ports, but only ~10% could be physically 
examined by PSC officers. Of the 7,000 ships that were inspected, ~18% of those inspected vessels were found to contain 
deficiencies, with 1% of inspected ships detained at port. For this program, a key priority is to identify methods that efficiently 
target deficient vessels to improve operational capacity and logistics. AI and machine learning solutions have been developed 
to predict which vessels pose the greatest risks using automated methods and help personnel make efficient decisions.
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Figure 1. Comparison of inspection efficiency rates of contemporary methods vs. the PSC AI model, defined as the number of ships found to be deficient 
within the number of ships inspected. Uninspected vessels are represented in grey, non-deficient in blue and deficient in red.

Vessel Deficiency & Inspection 
Targeting

Port State Control is fundamentally a 
problem that must be faced with limited 
resources—not every ship can be inspected, 
and some infractions are bound to escape 
notice. Maximizing inspection efficiency 
at the same level of resource investment 
is, therefore, a primary goal to improve 
operational efficiency. 

To identify vessels that are likely to be 
non-compliant, inspection personnel 
currently use a heuristics-based targeting 
matrix that cannot easily adapt to changing 
conditions and new hazards. AI algorithmic 
targeting can greatly increase the odds for 
such deficiency identification and augment 
workflows to improve inspection efficiency.

During development, Deloitte amassed 
a dataset of vessel and inspection data. 
AI/ML models can learn patterns in this 

vessel-level data (e.g., registered nation, 
port of origin, cargo contents, etc.) that 
predict the presence of infractions. Two data 
sources were pre-processed and combined: 
VesselFinder includes over 100,000 port 
calls from foreign-flagged ships between 
2018 and 2021, while the USCG PSIX 
dataset holds over 20,000 records of vessel 
inspections. Integration of these two sets 
directly links vessel characteristics to 
inspection outcomes, 
offering a variety of variables for models 
to associate with ground-truth deficiency 
labels. An example inspected vessel 
data point includes the ship’s registered 
nationality, year built, previous port, arrival 
time and draught. Using this composite 
dataset, custom AI models were developed 
to learn how vessel characteristics relate to 
deficiency status, determining important 
vessel features for manual review and 
providing a real–time risk score to support 
the USCG’s targeting matrix. 

The model’s performance, measured in 
targeting precision, was then evaluated 
using a holdout set of inspected ships that 
the model had never seen. Here, precision 
is defined as the ratio of ships found to be 
deficient versus the number of inspections 
performed or the percentage of inspections 
that unearth deficiencies. During evaluation, 
the model predicted a risk score for each 
unknown ship based on its characteristics, 
and the highest 10% were ranked and 
digitally inspected; their actual deficiency 
status is revealed, adding to or subtracting 
from the model’s targeting precision rate. 
To increase technical transparency, the PSC 
AI model also can output interpretability 
graphs for each vessel judgment. These 
plots (Figure 3) visualize the impact of each 
ship characteristic, such as draught, cargo 
type, towards the model’s overall risk score.
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Figure 2 compares the performance of 
current PSC inspections versus the AI model 
approach. Of the ships inspected by the  
PSC ML model, 34% actually contained one 
or more deficiencies aboard. This is nearly a 
two-fold increase to the 18% deficiency rate 
among vessels identified under the current 
PSC rule-based targeting matrix. In the 
field, this gain in precision grants inspection 
personnel an accurate diagnostic tool that 
boosts operational efficiency by wasting less 
time on non–deficient vessels.

In addition, other experimental model 
designs were tested that indicate 
opportunities for continued improvement, 
with a model–supervised version of the 
model scoring much higher, reaching 
over 57% (a 212% increase over non–AI) 
precision. However, this model-supervised 
approach currently carries several caveats 
in terms of data bias and real-world 
generalization that are detailed further 
below and can be overcome as additional 
data is collected in the future. This strategy 
provides an estimated upper range of 
detectable deficiencies available in the 
entire dataset.

Model Architecture & Primary 
Challenges
The maritime defense space presents two 
challenges that effective AI must overcome: 
transparency and data volume. For 
commercial and private-sector applications, 
AI/ML-based systems often have significant 
operational freedom, as they are generally 
subject to fewer regulatory constraints. In 

contrast, for maritime safety and security, 
decisions have a direct regulatory impact, 
creating a greater need for modeling 
transparency and preserving the inspector’s 
decision-making agency. Additionally, the 
resource constraints that limit the percent of 
ships inspected also create a lack of ground–
truth data for model training; without a 
sufficiently large amount of data from 
which to learn a representation of reality, 
most models will fail to accurately predict 
outcomes.

The PSC model has been specifically 
developed to exceed these operational 
requirements. The primary machine learning 
architecture was built using industry-
standard gradient boosted tree methods 
that offer state–of–the–art performance 
on tabular data, effectiveness in low-data 
scenarios, and ensures robustness with 
newly collected data. Gradient boosted 
algorithms build multiple sequential 
iterations of models, using data resampling, 
regularization and other techniques to finely 
tune a final model to the data available. 
They offer reliable performance in low–data 
scenarios, and also provide near–instant 
computations on single data points, 
minimizing the time between ship data input 
and risk prediction output.

Interpretability
Federal applications have heightened 
requirements for interpretability; greater 
risk upon failure demands greater 
transparency in decisions. Notably, some ML 
algorithms can avoid the notorious “black 

box” problem, where the machine logic that 
decides predicted output is fully opaque 
to human users. To maintain transparency 
and traceability standards adopted by the 
Federal Government, Deloitte has crafted 
two solutions to offer interpretability:

 • Visualization of key features (nationality, 
cargo load, etc.) leading to ship risk 
classification

 • A parallel model with reduced technical 
complexity, offering simple arithmetic 
calculations 

Importantly, this integrates the SHapley 
Additive exPlanations (SHAP) algorithm, 
which deconstructs each decision that the 
inspection model makes (Figure 3) to reveal 
how each ship characteristic influenced 
the model’s decision. SHAP also allows the 
calculation of aggregate feature importance, 
visualizing which vessel variables are most 
influential in modeling predictions overall.

For example, the model’s decision to flag 
a certain ship may be revealed to rest 
largely on a combination of the specific 
port of origin with a cargo load above a 
certain threshold. These “characteristics” 
are represented by mathematical weights 
the model encodes from the training data. 
When these weights are made transparent, 
humans are able to more clearly see which 
information may be influencing or skewing 
predicted outcomes and help influence real-
time inspection protocols.

Figure 2. Vessel Inspection Efficiency. The proportion of 
inspections discovering deficiencies of the new PSC ML model 
performs favorably compared to the current USCG Targeting 
Matrix. Model–supervised refers to an alternate, experimental 
version of the model with greater potential performance but 
higher risk of bias.



AI Port Control: Augmented Intelligence for Vessel Inspections

06

Figure 3. Sample Feature Importance of Model. Top—SHAP analysis of a single 
ship prediction. Red bars indicate a relative increase in deficiency probability, 
while blue indicates a relative decrease. Bar length represents the magnitude 
of the feature’s impact. The x–axis is drawn in log odds, with 0 indicating 50/50 
probability. Bottom—Aggregate feature importance of one model iteration. These 
scores represent each feature’s overall influence in decisions in either direction 
(inspect or do not inspect).

Providing statistics on a digital 
clipboard
Alongside the main gradient boosted model, 
Deloitte has created a simplified model 
to offer fully explainable decisions when 
choosing which ships to inspect. The ship 
risk percentages from this linear model can 
be demonstrated in real-time to end users 
who require numerical explainability of each 
decision. Each vessel risk decision from this 
simplified model can be clearly represented 
as a linear regression formula where 
each ship variable has an interpretable 
coefficient. As a result, the linear model can 
operate offline, with users manually writing 
the characteristics of a new vessel into 
the linear formula to receive an inspection 
recommendation. 

The linear model is less complex than 
the gradient boosted version and will 
necessarily sacrifice some performance in 
exchange for full traceability, as boosted 
models are able to learn more complex data 
interactions. However, end-users can deploy 
these two models in parallel and receive 
both simultaneous predictions for each 
incoming ship: The main model’s higher–
accuracy judgment displaying how much 
each vessel characteristic contributed to the 
decision, as well as the linear model’s score 
is supported by easily explainable variable 
weights. While accuracy may rank slightly 

lower than the gradient boosted model, this 
streamlined version allows the USCG to have 
a better understanding of the decisions the 
model is making.

Low–data strategies
In a real-world environment, developing a 
representative dataset and aggregating the 
required information can prove challenging, 
yet data quality is a primary driver of 
success in developing AI models. To begin 
building an effective dataset for Port State 
Control, information on incoming ships 
were aggregated from publicly available 
government–hosted shipping registries, 
while additional proprietary sources were 
purchased. Matching vessel characteristics 
to deficiency information required 
significant data cleaning and curation. While 
many ships come into port each day, the 
resource constraints limiting the number of 
inspections performed result in relatively 
low amounts of data on inspected ships. 
This leads to two notable data–related 
challenges:

 • A scarcity of target–class data, those 
ships that are both inspected and found 
deficient

 • A majority of overall ship data points 
are unlabeled as a result of non-
inspection

Due to the nature of the time-constrained 
investigation process, the large majority of 
ships sail by freely, leaving a large number of 
vessels without inspections. This relatively 
small number of ships inspected and found 
to be deficient leaves too little information 
for most models to successfully learn from, 
as the dataset does not represent a broad 
enough sample of all ships visiting ports. 

Examining available datasets also reveals a 
question of selection bias: The ground–truth 
data available represent ships scored by 
the USCG’s targeting matrix. This is unlikely 
to represent a truly balanced dataset of all 
ships, and thus introduces a native selection 
process and a sampling distortion as an 
additional challenge. Training on the small 
number of inspected ships selected by the 
targeting matrix results in a narrow model 
that fails to generalize to more diverse, 
real-world conditions. Deloitte implemented 
methods to resolve these challenges and 
create a robust model capable of efficient 
vessel targeting in production.
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CONTRASTIVE & MODEL–SUPERVISED 
LEARNING
The PSC model also tested a contrastive 
learning process to overcome these 
obstacles (Figure 4). This method uses 
altered “semi-synthetic” data points 
to increase the model’s resilience 
to adjacent, unknown samples, and 
to estimate the potential gain from 
increasing the amount of ground-truth 
data. Unlike many data augmentation 
methods that generate fully synthetic 
and often random data points, the PSC 
solution takes a different approach and 
instead synthesizes labels (of deficiency 
status) for real-world ship data. Model-
supervised approaches
demonstrate the ability to learn from 
previously unusable data that lacks 
“ground-truth” labels[1], and is employed 
here to analyze ships that have never been 
inspected, albeit with assumptions about 
the prevalence of deficiencies.

The training data was first split into two 
equal groups: Half for an augmentative 
“Labeler” model, and a half for a more 
standard “Predictor” model. The Labeler 
model is trained to predict deficient or not 
deficient labels on uninspected vessels, and 
then populates the remaining dataset with 
optional artificial labels indicating predicted 

deficiency status. Next, two versions of 
the Predictor model are trained on the 
second half of the data, one version using 
only real deficiency labels, the other using 
both real and artificial labels. Similar labels 
are thus propagated between similar ships 
in an unsupervised manner, then used to 
augment the standard supervised learning 
and prediction task. 

While the artificial-label model reaches 57% 
precision compared to the real-label’s 34%, 
there is no perfect method to confirm the 
performance of the Labeler, since no real 
inspection has been carried out for ships it 
artificially labels. Thus, it essentially trades 
a low-data bias for one of self-confirmation, 
and does not seamlessly translate to a 
real-world gain in performance. Instead, this 
contrastive learning process provides an 
estimated range of detectable deficiencies 
available in the entire dataset, and highlights 
the potential to increase model accuracy as 
further data is made available.

Deployment & Real-World Testing
The PSC AI solution can be easily distributed 
and accessed through an API endpoint and 
is containerized for ease of installation into 
any current compute environment, hybrid 
data center, or cloud environment of choice. 
The ML model has been developed for use 

with a GPU, and tested on an AWS p2.xlarge 
instance with an Ubuntu Deep Learning AMI.

To deploy such a system, organizations 
must manage the necessary software and 
IT infrastructure. This could either be on-
premises or cloud computing resources 
offered by third-party vendors such as 
Amazon Web Services (AWS) or Microsoft 
Azure. From there, a secure application can 
be developed and tested for delivery via a 
mobile device to personnel at ports. 

While having your own team set up 
hardware on-site gives you full control over 
IT specifications and transfer protocols, 
cloud computing can adapt and scale 
dynamically without significant procurement 
or setup costs. Moreover, a cloud-based 
solution has the following advantage in the 
PSC problem context:

 • Ports are distributed so data must travel, 
preventing on-premise redundant security

 • Shipping and security conditions may 
change, creating a need for flexible 
systems

Though cloud hosts offer a variety of secure 
data transfer protocols, some regulations 
require that data travel as little as possible 
as a redundant safety measure. However, 

Figure 4. Overview of Psuedo-Labeler and Deficiency Predictor model interactions on training and testing data. By predicting labels on uninspected ships, 
the model-supervised approach ‘unlocks’ more data to be used for vessel deficiency targeting, though it is inherently more biased than the purely realistic ground-truth 
model.
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it would be prohibitively expensive to set 
up separate computing resources at each 
port to run the targeting AI separately. An 
on-premises solution would have to be 
centralized at a PSC center that receives 
data from each port and returns deficiency 
predictions.

This minimal-travel advantage of an on-
premises deployment is neutralized by 
the distributed nature of shipping and 
inspection locations.
Furthermore, shipping and inspection 
protocols are subject to change over time: 
Cloud-based resources are inherently more 
adaptive and can be changed or scaled 
without incurring additional cost of the third-

party service charges. For example, if the 
size of incoming data changes dramatically, 
perhaps due to new information-recording 
systems or a global disruption in shipping 
routes, additional on-premise hardware 
must be manually purchased and integrated 
to meet demand, requiring time, personnel, 
planning, and upfront expenditure. 

A cloud-based deployment can handle 
such changes with minimal downtime and 
can be configured to scale automatically to 
meet spikes in demand. At the same time, 
additional costs can be saved by scaling 
down reserved cloud compute space during 
periods of low activity.

The PSC model may also be deployed as 
one service within a pre-existing Kubernetes 
cluster. Containerization in this manner 
future-proofs the PSC software, allowing for 
stable relaunches of the model on additional 
systems. Containers may also be kept 
dormant to save on computation costs until 
vessel judgment is required.

Planned integration & user application
the following example of a cloud-based 
workflow for PSC is both flexible and 
resilient: Incoming ships transmit data to the 
port authority, which automatically routes 
ship data through a secure connection to a 
cloud-hosted private network. Servers in

Figure 5. Inspection Model Dashboard. An application displaying a prediction 
on previously unseen ship data. Features and their influence on the risk score 
are displayed; the percentage of vessels to be inspected is customizable, allowing 
users to tune the model’s degree of sensitivity.

the PSC network feed data through one 
or more models and return the resulting 
output of each. These predictions and 
recommendations populate a custom built 
application (Figure 5), which credentialed 
employees can access to either replace or 
support their inspection protocols. 

These rapid deployment capabilities can be 
provided by a single integrated platform, 
deployed to a web-based browser, tablet, 
or other interfaces. Alternatively, they can 
be deployed onto dashboards and USCG 
tools, developed as a custom API service, 
or created as a combination of these 

approaches.

In most cases, these processes can be 
deployed in stages rather than all at once 
in a single deployment. An organization’s 
plan for adopting AI capabilities should 
align with a testing plan and an initial 
pilot in accordance with USCG’s technical 
priorities and skills maturity. For example, 
many organizations start by focusing on 
application testing in a select group of 
inspectors and understand real-world 
performance of the prediction serving 
once pilot SOPs have been approved. 
To succeed, continuous training and 

continuous monitoring will be necessary to 
properly pilot a relatively small number of 
inspections. 

Alternatively, the model can be launched 
directly into a “soft deployment” phase 
where predictions are delivered directly to 
USCG devices, but inspection personnel 
are not instructed to use its predictions 
from these tests. Once validated, a phase 
two approach can be taken to implement 
standards on use and acceptance and allow 
inspectors to leverage the solution and 
prove its field value in predetermining risk.
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Managing drift
Since typical AI models are built upon 
historic datasets, their predictions are only 
as accurate as incoming data is up-to-date. 
Drifts in data distribution that may occur 
over time or point events that fundamentally 
change shipping behavior can cause 
degradation to model performance as the 
learned patterns may no longer be relevant 
for new data in the real world. There are two 
sources that can cause these gaps between 
model and reality:

 • Data issues and biases during initial 
training

 • Naturally–occurring drift post-deployment

Changes in incoming data over time 
can slowly skew model outputs through 
selection bias: If a PSC model first trains 
upon a limited subset of ships, e.g., only 
those coming from Asia, then performance 
may suffer when examining new ships 
outside of that subset, as it lacks specific 
context. Identifying these data selection 
biases during development becomes 
paramount in effectively improving the 
generalizability of deployed models. During 
model development, Deloitte organized 
technical meetings between developers and 
SMEs to identify and address these biases, 
typically through some form of intelligent 
sampling and data augmentation methods.
Drift post-deployment can be understood in 
two broad categories: 

 • Concept Drift occurs when target 
definitions move. This includes cases when 
deficiency definitions, maritime law, or the 
output assurance threshold for inspection, 
is changed. 

 • Conversely, Data Drift occurs when the 
inputs change. This includes shifts in the 
type and frequency of incoming vessels 
due to external factors.

Concept drift is somewhat more controllable 
in this case; rules and regulations for 
shipping are rarely altered with significant 
impact, and these changes generally come 
with significant notification from regulatory 
entities. Data drift is arguably more certain 
and deleterious, as changes in specific 
ship information and unknown and new 

variables can reduce performance. Rather 
than addressing these unknown future 
changes in development, it is often far more 
productive to simply update the model over 
time. Retraining or refreshing a model adds 
in new, recent data to learn from and adjusts 
the AI model’s mathematical weights to 
better reflect current conditions. 

A deployed PSC model is constantly fed 
new vessel data while it’s in use, but most 
contemporary AI architectures are unable 
to predict and learn at the same time (as 
humans do) without extremely repetitive, 
labor-intensive computation. Therefore, new 
data is gathered into periodic batches and 
refreshed at scheduled intervals (either time 
or performance-based) to ensure continued 
model performance.

This process can also be automated; in 
particular, cloud-hosted architectures 
allow for simplified development of 
retraining pipelines that can take in new 
data and retrain models automatically. 
These architectures are relatively simple 
to deploy and are becoming industry-
standard processes across the machine 
learning space. Thus data drift is 
ultimately a manageable challenge, since 
any model can be scheduled to refresh 
on user-decided timelines. As model 
performance holds up or falls over long 
periods of time, these timelines can 
be redefined to match accelerating or 
decreasing rates of drift and reported on 
a scheduled basis.

Testing & evaluation
Even though the developed PSC model 
demonstrated promising performance on 
the test data, real-world conditions can 
present new challenges that historical data 
is not guaranteed to capture. Rather than 
trusting any AI solution to immediately yield 
robust on-site performance, high-stakes 
scenarios require thorough testing and 
evaluation of model performance in situ, as 
well as cautious integration alongside end 
users and decision-makers.

A slow, measured incorporation process 
is important both to provide sufficient 
time to gauge performance and to better 

acclimate personnel with regular use of 
AI predictions. Especially in public safety 
and defense contexts, dramatic shifts — 
such as transitioning from human-written 
statistics to machine learning target 
outputs — have the potential for significant 
change management requirements and 
the transformation of standard operating 
procedures and training to be implemented 
over time. One nuanced approach to 
integration is a side–by–side “blind trial” 
period. For a set amount of time, the 
machine learning model is deployed without 
delivering predictions to decision-making 
personnel. For each incoming vessel 
manually judged by personnel, the model 
generates and writes output to a database. 
This allows direct comparison of ML risk 
scores to actual inspection outcomes 
without altering operational procedures. 
Metrics can then be generated to evaluate 
performance, including the probability of 
actual deficiency given a high model risk 
ranking as well as the probability of no 
deficiencies with a low ranking.

In the case where model performance does 
not initially improve inspection efficiency, 
agile development steps can be taken to 
ingest new datasets and iteratively update 
performance statistics over time. New, more 
powerful approaches can be explored as 
well to augment model predictions and 
utilize aggregated data sources. If the AI’s 
predictions are found to be sufficiently 
accurate without posing a significant risk 
of upheaval, the model can move to full 
deployment, delivering predictions to key 
personnel to augment their inspection 
workflow. Alternatively, this automated 
evaluation trial period can be skipped 
entirely, and the model launched directly 
into a “soft deployment”. Here, the model 
is deployed as a “digital twin” to deliver 
predictions directly to staff members, but 
inspection personnel are instructed to use 
its predictions at their own discretion (or 
under organizational guidelines). This places 
humans firmly in control of the technological 
shift, and helps to engender user trust in 
the PSC system while it proves its value in 
predetermining risk.
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Conclusion
The current Deloitte PSC Targeting AI 
Solution showcases the potential benefits of 
augmenting human judgments with artificial 
intelligence. Trained on historic port data, 
the AI solution is estimated to improve 
targeting precision over the current human-
intensive targeting matrix by between 89% 
and 212% depending on model choice. 
Beyond pure performance improvements, 
the solution will also highlight the high 
impact patterns in the data that drive 
model risk predictions for human–in–
the–loop decision making. These model 
interpretability methods allow “soft” rollouts 
in high–stakes environments, allowing AI to 
transparently inform, rather than remove, 
human decisions. This yields immediate 
benefits while allowing trust to be built over 
time, respecting the pace and importance 
of organizational change. The solution is 
deployable in both cloud and on-premise 
environments, with the model capable of 
being integrated into personal devices to 
provide real-time insight into vessels before 
they reach the harbor.

The adoption of AI and automation tools 
can no longer be viewed as optional at 
the highest levels of federal and industrial 
operations, as the growth in complexity of 
data and IT challenges continually outpaces 
the growth of resources. Like advanced 
commercial enterprises, government 
agencies can adopt AI’s vast potential to 
reduce costs and improve performance, 
decision-making, and mission delivery. Given 
technical advances, the opportunities to 
exploit AI for PSC are limited only by the 
implementation of programs and policies 
that are dedicated towards operationalizing 
such technical solutions.

Expansion
One of the tenets of AI is for models to be 
task agnostic; the technology applied to PSC 
is most extendable to almost any problem 
requiring difficult judgment calls, especially 
in low–resource or fast-paced scenarios 
such as potential threat identification. 
Algorithms are able to unearth combinations 
of variables that are not immediately 
intuitive to humans and calculate precise 
predictions to support key decisions. The 

data format and specific architecture utilized 
in the PSC AI have found success in other 
high-risk environments where overwhelming 
amounts of data limit purely human 
solutions. 

Beyond tabular data, similar AI pipelines can 
ingest temporal, image, and even text-based 
information to provide automated, scalable 
and cost–effective AI–augmented solutions. 
The modeling paradigms described in this 
white paper are directly generalizable to any 
applications where structured data exists. 
Indeed, since this form of tabular data is 
commonplace in almost all government 
agencies, AI has vast potential to improve 
operations in every sector in applications as 
diverse as fraud detection, enhancing public 
policy in population risk, to automating legal 
document review in benefits administration.
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